
© Peter R. Egli 2017
1/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF WCF, MICROSOFTS UNIFIED
COMMUNICATION FRAMEWORK FOR .NET APPLICATIONS

WCF
WINDOWS COMMUNICATION

FOUNDATION

© Peter R. Egli 2017
2/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

Contents
1. What is WCF?

2. WCF‘s ABC

3. WCF model

4. The 4 layers of the WCF architecture

5. WCF programming model

6. WCF address (the 'A' in 'ABC')

7. WCF binding (the 'B' in 'ABC')

8. WCF contract (the 'C' in 'ABC')

9. WCF service hosting

10. Steps for creating and running a WCF service

11. WCF configuration versus programming

12. WCF and SOAP messages

© Peter R. Egli 2017
3/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

1. What is WCF (1/3)?
WCF is a unified communication framework for distributed applications.

WCF defines a common programming model and unified API for clients and services to send

messages between each other.

WCF is the current and future standard for distributed .Net applications.

Key characteristics of WCF:

 Service-oriented programming model (SOA):

Services are offered on an endpoint.

WCF completely separates service hosting, endpoints and services.

 Interoperability with non-WCF web services due to use of SOAP messages:

WCF implements many of the WS-* standards.

See http://msdn.microsoft.com/en-us/library/ms734776.aspx.

 Extensibility:

WCF client / server can be configured to interoperate with REST, ATOM-feeds, plain XML

or JSON messages (extensions for interfacing to any message-based service).

http://msdn.microsoft.com/en-us/library/ms734776.aspx

© Peter R. Egli 2017
4/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

1. What is WCF (2/3)?
 It provides a unified API to use various types of communication from an application.

 WCF sits on top of the .Net Framework.

WCF versus web services:

WCF is service-oriented. By separating the service interface (contract) from the transport

protocol and message encoding, a (logical) service can be reused in different scenarios.

A developer is forced to specify a service interface on a logical level and then define how the

service may be used (transport protocol, message encoding).

These characteristics nicely map to the web service paradigm where a WSDL-file defines the

what (service interface), the how (transport, message encoding) and the where (endpoint

address).

But: WCF also supports distributed applications that are not web service based.

Message-oriented

communication

WCF provides a

unified API for various

communication models.

WCF client

(.Net program)

WCF

.Net FW

MSMQ

TCP/IP

DCOM WS

HTTP

WCF service

(.Net program)

WCF

.Net FW

MSMQ

TCP/IP

DCOM WS

HTTP

© Peter R. Egli 2017
5/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

1. What is WCF (3/3)?
 WCF is a generic communication framework. WCF supports WS and other means of

communication.

 WCF supports different (message-based) communication protocols.

Possible scenarios with WCF:

WCF

MSMQ MSMQ

Client

WCF

MSMQ

Server

WCF

HTTP

Client

WCF

HTTP

Web service

WCF

Pipe

Client

WCF

Pipe

Service proc.

Client and server communice asynchronously

over an MSMQ (message queueing) infrastructure.

Web service client and service use WCF for

communication. WCF provides interoperability with

non-WCF web service clients / services.

Client and server use named pipes for

communication.

© Peter R. Egli 2017
6/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

2. WCF‘s ABC
The core concept of WCF is a service that is provided on an endpoint and accessible over the

network through a transport protocol.

Thus a WCF service is defined by ABC:

A = Address:

Where is the service available (the endpoint's URI in case of a web service).

B = Binding:

How can the service be accessed (what transport protocol is used).

C = Contract:

What does the service interface look like (operations, data-types).

The mapping of the ABCs to WSDL:

WCF term Question WSDL element

A (Address) Where <service> including element <endpoint>

B (Binding) How <binding>

C (Contract) What <types>

<interface>

© Peter R. Egli 2017
7/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

3. WCF model (1/4)
WCF defines a (consistent) service model with entities and relationships.

Application

WCF client WCF service

has has

Endpoint Endpoint

has has

11

* *

Communication stack

Security

protocol

1

*

1

hashas

Appl.

endpoint

Infrastructure

endpoint
Provides service

metadata

implements
Service

contract

corresponds to

Address

as URI

has

Instancing

model

has • Single

• Session

• Per call

Operation

contract

contains

WSDL

Message

encoding

Transport

protocol

Binding elements
HTTP TCP MSMQ

*

Text/

XML
MTOM Binary

Request

reply

One-

way
Duplex

Message

exchange

pattern

Channel

Channel

Channel

has

Message

contract

Host
• Self-hosted

• Service host
hosted in

ABC elements (blue)

are described by

a WSDL file.

Message

uses

Data

contract

uses

© Peter R. Egli 2017
8/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

3. WCF model (2/4)
Application:

An application has a WCF client and / or WCF service.

WCF client:

Component with a WCF endpoint for communicating with a WCF service through messages.

WCF service:

Counterpart to WCF client. Runs in its own process (self-hosted) or in a specific service

hosting process (IIS, Windows Activation Service, Windows Service).

Endpoint:

WCF client and service use an endpoint to connect to each other.

Application endpoint: Endpoint on which an application service is exposed / offered.

Infrastructure endpoint: Part of WCF system to offer metadata of an application service.

Message:

Unit of data exchange between WCF client and service. WCF is strictly message-based.

Address:

Physical address comprising hostname, port number and service name (=URI). The application

service is accessible under such an address.

Example.: http://localhost:8000/HSZ-TWSMW/DateTimeService

© Peter R. Egli 2017
9/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

3. WCF model (3/4)
Service contract:

Set of operations which define the application service. The service contract is implemented

by an interface in a .Net language (e.g. C# interface).

Operation contract:

Defines the signature (parameters and return type) of an individual operation of a service.

Message contract (SOAP message layout):

Describes the format of a message (which information elements should go into the header,

which should go into the body, level of security to be applied to message etc.).

Instancing model:

Defines how the service is instantiated: Singleton, Session, Single-Call.

Binding (element):

Defines how an endpoint communicates with its peer endpoint. Binding elements define

individual aspects of the communication, basically the transport protocol (raw TCP, HTTP),

message encoding (text, binary) and the security.

Channel:

Concrete implementation of a binding element (binding element = configuration, channel =

implementation).

© Peter R. Egli 2017
10/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

3. WCF model (4/4)
Transport protocol (transport binding):

Defines the protocol used to transfer messages “over the wire” (wire protocol). A common

transport protocol is HTTP (HTTP over TCP).

Message encoding (binding element):

Defines the formatting of messages before they are sent over the wire (using the transport

protocol). Common message encodings are text/XML (SOAP) or MTOM (Message Transmission

Optimized Mechanism) for efficient transfer of binary data.

Security protocol (security binding):

Defines what security functions (authentication, encryption) are applied to messages.

Message exchange pattern:

Defines how messages are exchanged (request-reply, one-way, duplex).

Communication stack:

Comprises different binding elements, at a minimum a transport binding element and message

encoding binding element.

Host:

Runtime environment for a service. Either self-hosted (specific process for service) or a general

hosting process, e.g. IIS, WAS or Windows service.

© Peter R. Egli 2017
11/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

4. The 4 layers of the WCF architecture

Contracts define the service (as XSD):

Data contract  Definition of complex types (structures, classes, generics).

Service contract (C)  Definition of operation signatures.

Message contract (C)  Layout of (SOAP) messages.

Policies and binding (B)  Definition of transport protocol (TCP, HTTP) and

message encoding (text, binary); security functions used (if any).

Service runtime contains runtime behavior (functions of service host):

Examples: Error behavior, throttling message reception, delivery of service

metadata to the outside world.

Messaging layer with channels (channel = implementation of binding element):

- Security (authentication & encryption) & reliability (reliable messaging) channels.

- Message encoding channels (text, binary, MTOT, XML).

- Transport channels (TCP, HTTP).

All used channels comprise the channel stack.

Channels, service runtime behaviors and service itself (modules implementing

the contracts) are run in a host process. Services can be:

a. Self-hosted (run in their own process).

b. Hosted by an external agent (WAS, IIS, Windows services).

Application

Contracts

Data

Contract

Message

Contract

Service

Contract

Policy

and

Binding

Service Runtime

Throttling

Behavior

Error

Behavior

Metadata

Behavior

Message

Inspection

Instance

Behavior

Transaction

Behavior

Dispatch

Behavior

Concurrency

Behavior

Parameter

Filtering

Messaging

HTTP

Channel

TCP

Channel

Transaction

Flow

Channel

MSMQ

Channel

NamedPipe

Channel

WS Security

Channel

WS Reliable

Messaging

Channel

Encoders:

Binary/MTOM

/Text/XML

Activation and Hosting

Windows

Activation

Service

.exe

(self-

hosting)

Windows

Services
COM+

© Peter R. Egli 2017
12/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

5. WCF programming model (classes and interfaces)
The ABC elements of WCF are offered as specific class libraries.

WCF term Corresponding class library (namespace)

A (Address) System.Uri

B (Binding) System.ServiceModel

E.g.

BasicHttpBinding (SOAP, non-secure, interoperable, non-duplex)

WebHttpBinding (REST-style binding, i.e. non-SOAP)

C (Contract) Interfaces / classes annotated with System.ServiceModel attributes:

[OperationContract]

[ServiceContract]

[MessageContract]

Data contract (definitions of types used in operation contracts):

[DataContract] (System.Runtime.Serialization)

E (Endpoint) System.ServiceModel.ServiceEndpoint

© Peter R. Egli 2017
13/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

6. WCF address (the 'A' in 'ABC')
The WCF address defines where a web service (endpoint) is accessible.

WCF models an address as an endpoint reference (EPR) as per the WS-Addressing standard.

WS-Addressing EPR schema:
<wsa:EndpointReference>

<wsa:Address>xs:anyURI</wsa:Address> URI

<wsa:ReferenceProperties>... </wsa:ReferenceProperties> ? Properties to identify the endpoint

<wsa:ReferenceParameters>... </wsa:ReferenceParameters> ? Parameters associated with an endpoint

<wsa:PortType>xs:QName</wsa:PortType> ? Endpoint type (WSDL 1.0 portType, WSDL 2.0 interface)

<wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ? Link to WSDL service element containing the endpoint descr.

<wsp:Policy> ... </wsp:Policy>* Security settings of endpoint

</wsa:EndpointReference>

WS-addressing EPR see http://www.w3.org/Submission/ws-addressing/#_Toc77464317

Example endpoint address URI:

http://localhost:8000/HSZ-TWSMW/DateTimeService

Endpoint address class System.ServiceModel.EndpointAddress:
EndpointAddress.Uri  URI

EndpointAddress.Headers  Reference properties and parameters

EndpointAddress.Identity  Security settings

Scheme /

protocol

Machine

address (IP or DNS)

Port # Path under which the service is available

http://www.w3.org/Submission/ws-addressing/#_Toc77464317
http://localhost:8000/HSZ-TWSMW/DateTimeService

© Peter R. Egli 2017
14/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

7. WCF binding (the 'B' in 'ABC') (1/2)
The binding defines how a web service endpoint is accessed.

A binding contains the following elements:

1. Transport protocol:

 Underlying transport protocol to use when interacting with the web service.

 Examples: TCP, HTTP, MSMQ.

2. Message encoding:

 Definition of the message encoding.

 Examples: Text/XML (SOAP), binary, MTOM (Message Transfer Optimized Mechanism).

3. Security / reliability settings:

 Message security settings (e.g. encryption and authentication of message).

 Transport security (e.g. encryption of transport connection).

Transport connection and protocol Encoding and securing of

application messages.

Encoder +

Security

Encoder +

Security

Encoding and securing of

application messages.

© Peter R. Egli 2017
15/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

7. WCF binding (the 'B' in 'ABC') (2/2)
WCF provides the following bindings:

Binding Interoperability Security Session Transactions Duplex Encoding

BasicHttpBinding WS-I Basic Profile N, T, M, m N N No Text, MTOM

WSHttpBinding WS-* standards T, M, m N, RS, SS N, Yes No Text, MTOM

WSDualHttpBinding WS-* standards M, m RS, SS N, Yes Yes Text, MTOM

WSFederationHttpBinding WS-Federation N, M, m RS, SS N, Yes No Text, MTOM

NetTcpBinding .NET T, M, m, N TS, RS, SS N, Yes Yes Binary

NetNamedPipeBinding .NET T, N N, TS N, Yes Yes Binary

NetMsmqBinding .NET (WCF) M, T, N N, TS N, Yes No Binary

NetPeerTcpBinding .NET T N N Yes N/A

MsmqIntegrationBinding MSMQ T N N, Yes No MSMQ

BasicHttpContextBinding WS-I Basic Profile N, T, M, m N N No Text, MTOM

NetTcpContextBinding .NET N, T, M, m T, RS, SS N, Yes Yes Binary

WSHttpContextBinding WS-* standards T, M, m N, RS, SS N, Yes No Text, MTOM

WebHttpBinding HTTP (REST) N N N No POX

Key:

N: None

T: Transport

M: Message

m: mixed

RS: Reliable Session (WS-ReliableMessaging)

SS: Security Session

TS: Transport Session

More details on WCF bindings see http://msdn.microsoft.com/en-us/library/ms730879.aspx.

POX: Plain Old XML

http://msdn.microsoft.com/en-us/library/ms730879.aspx

© Peter R. Egli 2017
16/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

8. WCF contract (the 'C' in 'ABC')
WCF interfaces are called “contracts” (both client and server must comply with the contract).

Contracts describe operations, data structures and messages.

A service contract defines:

a. Grouping of operations in a service  .Net attribute [ServiceContract]

b. Signature of operations  .Net attribute [OperationContract]

c. Data types of operations  .Net attribute [DataContract]

From contract to code (and back):

The utility SvcUtil.exe may be used to map between abstract and interoperable service

definitions (WSDL documents) and programmatic definitions of interfaces (C# code).

SvcUtil.exe either retrieves the service definition from a WSDL file on disk using the DISCO

protocol (Microsoft proprietary WS discovery protocol) or directly from a running service

instance through the standard WS-MetaDataExchange protocol.

WSDL /

XSD

.Net C#

code

Exportable contract

description

Programmatic

definition of contract

SvcUtil.exe

© Peter R. Egli 2017
17/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

9. WCF service hosting
A service host is the process that runs (executes) the service(s).

WCF provides different possibilities to host a service.

A. Self-hosted service:

The service runs in an application process that the developer created.

The lifecycle (when is service opened and closed) is controlled by the service itself.

B. Standard Windows hosting process:

.Net and Windows offer system processes that are designed to host services.

a. IIS (Internet Information Services):

 Only HTTP transport supported (IIS is a web server).

b. WAS (Windows Activation Services):

 New process activation framework on which IIS 7.0 is based.

 Supports HTTP, TCP, and pipe transports.

c. Windows services:

 Standard Windows execution with security etc.

 Lifecycle of service controlled by service startup configuration.

More information and a comparison of WCF hosting options see http://msdn.microsoft.com/en-

us/library/ms730158.aspx.

http://msdn.microsoft.com/en-us/library/ms730158.aspx

© Peter R. Egli 2017
18/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

10. Steps for creating and running a WCF service (1/4)
The following steps outline how to create a web service in Visual Studio 2010.

1. Visual Studio 2010 project selection (1/2):

The hosting environment of a web service defines the project template to be used.

a. Visual C# / WCF / WCF Service Library project:

 Output: Service DLL (Dynamic Link Library).

 To be run in WAS.

 Files: IService1.cs with [ServiceContract] attributes (service interface = contract).

Service1.cs (service implementation of interface).

App.config (configuration file with transport binding and other settings).

b. Visual C# / WCF / WCF Service Application project:

 Output: Service DLL.

 To be run in IIS.

 Files: IService1.cs with [ServiceContract] attributes.

Service1.cs (service implementation).

Web.config (configuration file with HTTP-transport binding and other settings).

© Peter R. Egli 2017
19/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

10. Steps for creating and running a WCF service (2/4)
The following steps outline how to create a web service in Visual Studio 2010.

1. Visual Studio 2010 project selection (2/2):

c. Self-hosted:

 Standard C# application project.

d. Managed Windows service (formerly called NT service):

 Windows service project.
 Implementing class has to inherit from ServiceBase (base class for Windows service) as

well as from a WCF service interface.

© Peter R. Egli 2017
20/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

10. Steps for creating and running a WCF service (3/4)
2. Interface definition (service contract as C# interface or C# class):

Define the interface of the web service with a .Net interface.

Example interface contract definition in C# (containing operation contracts):
[ServiceContract(Namespace = "http://indigoo.WSMW")]

public interface IMyInterface

{

[OperationContract]

string MyFunction();

[OperationContract]

int MyOtherFunction();

}

3. Service contract implementation (C# class implementing the interface):

Create .Net class that implements the web service interface.
public class MyService : IMyInterface

{

public string MyFunction() {...}

...

}

© Peter R. Egli 2017
21/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

10. Steps for creating and running a WCF service (4/4)
4. Deploy and run the service:

The final step is to deploy the service assembly (DLL) into the hosting environment or to start

it in case of self-hosting.

For self-hosting services, the following code needs to be added to the service (definition of

endpoint with address and binding):

selfHost.AddServiceEndpoint(typeof(MyService), new BasicHttpBinding(), "MyService");

Finally the service can be started in the WCF self-hosting environment as follows:

selfHost.Open();

© Peter R. Egli 2017
22/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

11. WCF configuration versus programming (1/2)
WCF client and service can be defined by configuration (XML file, declarative) or

programmatically (.Net classes).

Good practice:

For improved reusability of web services in different environments, contract ('C') and address

('A') as well as transport binding ('B') should be separated.

 Define interface and implementation programmatically (C#) without transport and message

encodings.

 Definition of transport binding, address and message encoding in configuration file.

Declarative service configuration:

Major sections of a service configuration (App.config or Web.config)) file are:
<system.ServiceModel>

<services>

<service>

<endpoint/>

</service>

</services>

<bindings>

<!-- Specify one or more of the system-provided binding elements, for example, <basicHttpBinding> -->

<!-- Alternatively, <customBinding> elements. -->

<binding> <!-- For example, a <BasicHttpBinding> element. --></binding>

</bindings>

<behaviors> <!-- One or more of the system-provided or custom behavior elements. -->

<behavior> <!-- For example, a <throttling> element. --> </behavior>

</behaviors>

</system.ServiceModel>

© Peter R. Egli 2017
23/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

11. WCF configuration versus programming (2/2)
Graphical configuration of service with SvcConfigEditor.exe:

The service can be configured graphically with the utility SvcConfigEditor.exe (path 'Microsoft

SDKs\Windows\v7.0A\Bin\SvcConfigEditor.exe).

SvcConfigEditor.exe can also be launched through the App.config / Web.config files' context

menu:

© Peter R. Egli 2017
24/24

Rev. 2.30

WCF – Windows Communication Foundation peteregli.net

12. WCF and SOAP messages
Usually WCF hides the mapping of operations (operation contracts, data contracts) to SOAP

messages (WCF bindings that use SOAP messages automatically map operations into SOAP

messages).

If necessary, WCF MessageContracts provide complete control over the structure of the

exchanged SOAP messages (similar concept to JAX-WS @WebServiceProvider annotations).

MessageContracts define a class that can be used as argument type in operations. In

MessageContracts, the class members can be mapped to the SOAP header or body as follows:
namespace WSMW_WCF {

[ServiceContract]

interface IHelloWorld {

[OperationContract]

HelloResponseMessage SayHello(String helloMsg);

}

[MessageContract]

public class HelloResponseMessage {

private string localResponse = "...";

private string extra = "...";

[MessageBodyMember]

public string Response {

get { return localResponse; }

set { localResponse = value; }

}

[MessageHeader]

public string ExtraValues {

get { return extra; }

set { this.extra = value; }

}

}

}

